Introduction

Amba Kak

Although the terminology varies,¹ we use the phrase biometric recognition technologies to describe systems that “fix”² official identities to bodily, physiological, or behavioral traits,³ providing new ways for individuals to identify themselves, and also to be identified or tracked. While fingerprints have the longest history as a marker of identity and continue to be used in a number of applications across the world, other bodily markers like face, voice, and iris or retina are proliferating, with significant research exploring their potential large-scale application. Emerging areas of interest in this field include using behavioral biometrics like gait (i.e., how a person walks), keyboard keystroke patterns, and multimodal combinations of biometrics to identify and potentially make inferences about individuals.⁴

Beyond identifying people, these systems increasingly claim to be able to infer demographic characteristics, emotional states, and personality traits from bodily data. (This practice is sometimes referred to as “soft biometrics”⁵ in technical literature.) In other words, there has been a change in questioning that historian Jane Caplan has summarized as a shift from “What person is that?” to “What type of person is that?”⁶ Scholars have pointed to the fact that many of these systems that claim to detect interior characteristics from physical information are built

1 The terms biometric recognition, identification, and processing are sometimes used interchangeably; other times, they are given more precise and distinct definitions. We use the umbrella terms biometric systems, biometric technologies, or biometric recognition (which has broad cachet in policy discourse) to cover the range of automated technologies that use biometric identifiers to identify, verify, or confirm a person’s official identity. We also highlight open questions about whether systems that produce other kinds of inferences from bodily data (beyond official identity) should be included. This compendium does not analyze the regulation of DNA identifiers. While DNA is recognized as biometric information because of its ability to uniquely identify individuals, it is generally regulated under separate genetic privacy laws rather than biometric privacy laws, and its use in the criminal justice system has also been regulated under specific rules.

on debunked and racist scientific and cultural assumptions about who looks like what “type” of person, and lead to demonstrated harms when applied in sensitive social domains like hiring or education.

The rapid expansion of the biometrics industry coincides with advancing technical methods and features and decreasing costs of hardware and software. Camera- and video-analytics technologies being produced today are designed to have higher resolution, the ability to work from greater distances, and night-vision sensors that create the conditions for live facial recognition and real-time surveillance in public spaces. Body-worn cameras that can attach to clothing or helmets have found a huge market among law enforcement agencies. And advanced voice recorders that are able to pick up recordings from a greater distance are transforming voice recognition into a tool that could enable persistent remote surveillance.

Meanwhile, the ubiquity of face photographs and voice recordings tagged with people's names on the internet has greatly decreased the financial and technical resources required to create the databases that underpin face and voice recognition systems. Clearview AI provides an example. The company was an inconspicuous start-up until it attracted global controversy in early 2020 for the three billion labeled face images (matched to names) it scraped from the web without consent. The company then used these photos to market surveillance tools to a range of private and public actors, claiming that its system could pull up identity and other intimate information about anyone whose image was in its database. Recent reporting demonstrates that Clearview AI is not unique. In July 2020, the German digital rights blog Netzpolitik uncovered a Polish company called PimEyes that creates a similar “face search engine” with a database of nine hundred million images scraped from the web. The magnitude of these companies’ systems, along with their relative obscurity, demonstrates the way the market for biometric recognition systems consists of a number of nontransparent vendors that sell their systems globally without any oversight or scrutiny.

A range of mostly proprietary algorithmic processes enable vendors to transform these databases into biometric recognition systems capable of identifying individuals at a large scale. Creating such a system requires a combination of human and computational labor, as well as a formidable technical, financial, and political infrastructure. Labeling and tagging biometric data in order to make it searchable and to prepare it to feed into machine learning systems requires significant, on-demand human labor power. There is no reliable way to create these systems without such labeled data. At present, much of this data labeling work, often contingent and underpaid, is outsourced to firms across the world, with a high concentration in countries in the Global South.15 Using machine-learning techniques such as deep learning and readily available neural network architectures, these large datasets of images are used by firms to train and calibrate computer models that are designed and optimized to predict “matches” within a database, which in turn confirm or reveal identity.16

The frenzied growth of biometrics into a global multibillion-dollar industry has not happened organically.17 Powerful state and private actors promote the belief that these technologies are effective, necessary, and beneficial. Their core claim is that a strong connection exists between bodily traits and identity, and that biometric identifiers can be uniquely attributed to a particular individual with a high degree of accuracy and continuity over time.18 This claim is naturalized in biometric systems, as is the corollary belief that these digital technologies have lower chances of fraud compared to non-biometric and analog means of identification.

These claims of accuracy and efficiency are often taken as a given, and transposed onto broader societal and economic values like security, safety, and more efficient service delivery.19 While fingerprints have the longest history as a marker of identity and continue to be used in a number of applications across the world,20 other bodily markers like face, voice, and iris or retina are proliferating, with significant research exploring their potential large-scale application. Police agencies use data produced by facial recognition systems to identify suspects, make arrests, and confirm guilt or innocence through system matches.21 It is also being used as a tool to do ID checks for those who lack identification documents,22 to monitor large events or public spaces

16 Neural network architectures like ResNet are widely available for training on individual datasets so developers can more quickly and efficiently build their own models. See Connor Shorten, “Introduction to ResNets;” Towards Data Science, Medium, January 24, 2019, https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4.

18 Sup. 3. Humans have always identified one another in part based on the way we look or sound. Kelly Gates explains how face recognition has proliferated in part because it digitized and automated an already existing documentary regime of face verification, where passport photos were routinely affixed to all manner of government identification documents.

19 On the “securitization of identity,” see generally Nikolas Rose, Powers of Freedom: Reframing Political Thought (Cambridge: Cambridge University Press, 1999).

for known criminals, and to surveil protests.\(^{23}\) Beyond face-based systems, a recent investigation revealed that dozens of prisons across the US were creating voice-print databases of inmates and applying voice recognition to their phone communication to detect when particular voice prints appear, track call recipients of interest, and even to identify external people who were contacting people in prison most often.\(^{24}\) Meanwhile, amid an environment of heightened xenophobia and anti-immigrant political rhetoric, the use of biometrics is proliferating as a form of border control technology.\(^{25}\) The rationale of security is by no means restricted to law and immigration enforcement. It has driven the use of these tools as access control technologies for workplaces, schools, and apartment complexes, where they automate identity verification and even evaluate behavior to determine entry permissions.\(^{26}\)

In some ways, this growth and normalization of biometric recognition technology follows a similar trajectory to the rapid growth of closed-circuit television (CCTV) use through the 2000s, despite no clear evidence that it was effective in controlling crime. Security systems are often installed as a reaction to severe crimes, but without evidence that they would have prevented that crime in the first place. Indeed, research shows that the rapid proliferation of video surveillance followed from “crises, triggered by particular events such as, a child-kidnapping, a class-room murder, a terrorist outrage or rising concerns over crime.”\(^{27}\)

Today, governments across the world are the largest customer of the global biometrics industry, sustaining and shaping its growth. The development of tools for this wide range of government functions is typically outsourced to private firms that develop, market, and maintain these systems. A 2019 market-research report says that the “government segment is the highest revenue generating segment among all the applications of biometric authentication and identification.”\(^{28}\) Outside of security functions, governments are increasingly adopting biometric identifiers as a routine part of service delivery, with the active support of international development institutions and donor agencies. Biometric IDs are promoted as a means to prevent

service delivery fraud. Many of the ID systems are being rolled out in Global South countries—like in India, the Philippines, Kenya, and Brazil—and are not sector-specific, but are instead “general-purpose” IDs that construct a digital, biometric identity for each resident.29

Outside of government, biometric recognition systems have been normalized as part of everyday experiences, largely driven by the goal of preventing fraud. Biometric locks are now a staple feature of many smartphones and laptops, and biometric profiles of customers offer a way to uniquely identify individuals across their transactions online or at ATMs. Biometrics are also being promoted as a novel and promising consumer advertising technology,30 where individuals can walk through cameras in a shopping space and be offered personalized advertising or be verified for loyalty programs seamlessly.31

The last few years mark a critical juncture, perhaps even a turning point, in the trajectory of continued biometric expansion. Civil-society advocates have challenged the foundational arguments made by companies and governments that produce and promote these technologies, highlighting the tangible harms caused by their use. Mounting research demonstrates that these systems perform poorly when used in real-life contexts,32 even when the system meets narrow assessment standards that the industry relies on to back claims of accuracy.33 Even systems that boast high accuracy rates have unevenly distributed errors. They perform less well on certain demographics than on others,34 with particularly high failure rates for Black women, gender minorities, young and old people, members of the disabled community, and manual laborers.35 Beyond accuracy, research and civil society are also challenging the dominant discourses

of security, safety, and efficiency that have driven marketing and demand for these systems. Advocates are increasingly asking for whom such systems provide safety and security. The claim that biometric surveillance “makes communities safer” is heavily marketed but loosely backed. Companies and governments make access to details on these systems and their use difficult to obtain, but even so, there is strong evidence that these systems are being deployed in ways that harm historically marginalized people and communities. For example, in the US, there have been multiple cases where facial recognition has resulted in misidentification of suspects, including cases where facial recognition is used as primary evidence to determine guilt.36 This harm is compounded by the systematic denial of basic due process rights during trial, in which defendants are denied access to information about whether and how these systems were used.37 Even outside of law enforcement, there is no transparency at all when it comes to privately created “watch list” databases, which are likely being shared and institutionalized through their use at large-scale events, retail stores, and housing complexes. At a recent Taylor Swift concert, all attendees were subject to facial recognition without their knowledge or consent, creating public debate around the lack of safeguards people would have recourse to if they were blacklisted unfairly by these systems.38

As new applications of these technologies are created, so are new forms of pushback. Real-time monitoring of protests with facial recognition (e.g., in Hong Kong,39 Delhi,40 Detroit,41 and Baltimore42) has been met by fierce community opposition. This type of pervasive real-time surveillance can potentially produce chilling effects on the democratic exercise of rights to free speech and movement in public life. Organized tenants groups have contested the use of facial recognition and other property technologies (“PropTech”) to control access to residential buildings, arguing that they provide landlords with greater unaccountable control, and the ability to harass and surveil tenants.43 Meanwhile, coalitions between digital-rights organizations and social welfare and accountability activists have challenged biometric ID schemes for social service

42 Spivack, “Maryland’s Face Recognition System Is One of the Most Invasive in the Nation.”

delivery on the basis of their impacts on privacy as well as the denial of basic entitlements due to technical or operational failures in these systems. Advocacy campaigns continue to question the use of facial recognition at airports, as well as the reuse of driver’s licenses and other civilian biometric databases for immigration enforcement and private investigation purposes.

While public advocacy is increasing in many parts of the world, and each campaign has its unique characteristics related to local political and economic contexts, what unites the current wave of pushback is the insistence that these technologies are not inevitable. Questioning technological inevitability has become a popular refrain, and reminds those acquiring, promoting, and regulating these systems that the future course of these technologies must and will be subject to greater democratic control.

Calls for regulation include demands to introduce new laws (e.g., like data-protection frameworks); to reform and update existing laws (e.g., laws that currently only regulate fingerprints and DNA use in the criminal process); to pause these systems; or to outright ban their use. In Kenya and India, there have been demands to pass data-protection laws amid the rollout of large-scale biometric ID projects without such laws in place. Parliamentarians and government officials in the UK and a government-appointed advisory group in Scotland have acknowledged the need for a broad regulatory framework for biometric use, alongside the need to update existing laws that only apply to fingerprint and DNA biometrics. The clearest pushback on the idea that these technologies are inevitable has come in the form of advocacy championing complete bans or moratoria on the use of these systems, irrespective of context. Similarly, while

a recent Indian Supreme Court decision eventually upheld the constitutionality of the country’s biometric ID project, a dissenting opinion from one of the judges also made clear that it’s not too late to turn back, ordering that “all such data be destroyed.”

Advocacy and the threat of regulation have spurred companies to act proactively to mitigate, and potentially undercut or postpone, demands for prohibition or strict regulation. Microsoft and Amazon have released calculated public statements in support of facial recognition regulation. More recently, IBM, Microsoft, Amazon, and others committed to pause their use of these technologies, citing disproportionate harms to people of color amid widespread antiracist Black Lives Matter mobilization in the US and around the globe. Activists responded by reminding legislators that these voluntary gestures were not nearly enough: “Facial recognition, like American policing as we know it, must go.”

Amid heightened public scrutiny, interest in regulating biometric technologies has grown significantly. The degree of openness to legislating technology varies, and for some countries regulation is not a realistic or appropriate intervention at all. Yet in many parts of the world, the next few years do seem poised to produce wide ranging regulation and with that, offer the possibility to alter the future course of biometric technologies. This compendium responds to this environment of possibility, compiling detailed case studies of existing attempts to regulate biometric systems that post emergent and open questions for the future.

51 Often these companies publicly champion the need for some “regulation” but simultaneously lobby against moratoria and bans.

This collection of eight essays from diverse contributors covers widely divergent contexts:

Australian Identity-Matching Services Bill: Jake Goldenfein (Melbourne Law School) and Monique Mann (Deakin University) track the institutional and political maneuvers that resulted in Australia's ambitious centralized facial recognition program (“The Capability”). They draw lessons from what they term the “futility of regulatory oversight.”

The Economy (and Regulatory Practice) That Biometrics Inspires: A Study of the Aadhaar Project: Nayantara Ranganathan (lawyer and independent researcher, India) explains how law and policy around India’s Biometric ID (“Aadhaar”) project eventually served to construct biometric data as a resource for value extraction by private companies. She explores how regulation was influenced by the logics and cultures of the project it sought to regulate.

A First Attempt at Regulating Biometric Data in the European Union: Els Kindt (KU Leuven) provides a detailed account of the European Union's General Data Protection Regulation (GDPR) approach to regulating biometric data. As many countries are set to implement similarly worded national laws, she warns of potential loopholes and highlights key areas for reform.

Reflecting on the International Committee of the Red Cross’s Biometric Policy: Minimizing Centralized Databases: Ben Hayes (AWO Agency, Consultant legal advisor to the International Committee of the Red Cross [ICRC]) and Massimo Marelli (Head of the ICRC Data Protection Office) explain ICRC’s decision-making process as they formulated the institution's first biometrics policy in the context of humanitarian assistance, with a focus on minimizing the creation of databases and risks to vulnerable populations.

Policing Uses of Live Facial Recognition in the United Kingdom: Peter Fussey (University of Essex) and Daragh Murray (University of Essex), lead authors of the independent empirical review of the London Metropolitan Police’s trial of Live Facial Recognition (LFR), explain how existing legal norms and regulatory tools fell short, with broader lessons for the regulation of LFR in the UK and elsewhere.

A Taxonomy of Legislative Approaches to Face Recognition in the United States: Jameson Spivack and Clare Garvie (Georgetown Center on Privacy and Technology) write about the dozens of bans and moratoria legislation on police use of facial recognition in the US, providing a detailed taxonomy that goes beyond these broad categories, and lessons learned from their implementation.

BIPA: The Most Important Biometric Privacy Law in the US? Woodrow Hartzog (Northeastern University) explores the promise and pitfalls of the State of Illinois’ Biometric Information Privacy Act (BIPA) and, more broadly, of the private right of action model. He questions the inevitable limits of a law that is centered on notice and consent.

Bottom-Up Biometric Regulation: A Community’s Response to Using Face Surveillance in Schools: Stefanie Coyle (NYCLU) and Rashida Richardson (Rutgers University, AI Now Institute, NYU) examine the controversial move by a school district in Lockport, New York, to implement a facial and object recognition system. They highlight the community-driven response that incited a national debate and led to statewide legislation regulating the use of biometric technologies in schools.